(1) As shown in figure 1, we call it "eight characters". Please specify ∠ A+∠ B = ∠ C+∠ D; (2) Read the following and solve the following problems.

(1) In △AOB, ∠ A+∠ B+∠ AOB = 180,

In △COD, ∠ C+∠ D+∠ COD = 180,

∠∠AOB =∠COD,

∴∠a+∠b=∠c+∠d;

(2) As shown in Figure 2, ∫AP and CP share ∠BAD and ∠BCD equally,

∴∠ 1=∠2,∠3=∠4,

∠∠2+∠B =∠3+∠P,

∠ 1+∠P=∠4+∠D,

∴2∠P=∠B+∠D,

∴∠p= 12(∠b+∠d)= 12×(36+ 16)= 26;

① As shown in Figure 3, ∫AP bisects ∠BAD's external angle ∠FAD, and CP bisects ∠BCD's external angle ∠BCE,

∴∠ 1=∠2,∠3=∠4,

∴∠PAD= 180 -∠2,∠PCD= 180 -∠3,

∫∠P+( 180-∠ 1)=∠D+( 180-∠3),

∠P+∠ 1=∠B+∠4,

∴2∠P=∠B+∠D,

∴∠p= 12(∠b+∠d)= 12×(36+ 16)= 26;

② As shown in Figure 4, ∫AP bisects ∠BAD's external angle ∠FAD, and CP bisects ∠BCD's external angle ∠BCE,

∴∠ 1=∠2,∠3=∠4,

∴( 180-2∠ 1)+∠b =( 180-2∠4)+∠d,

In quadrilateral APCB, (180-∠1)+∠ p+∠ 4+∠ b = 360,

In quadrilateral APCD ∠ 2+∠ P+( 180-∠ 3)+∠ D = 360,

∴2∠P+∠B+∠D=360,

∴∠p= 180- 12(∠b+∠d);

③ As shown in Figure 5, ∫AP bisects ∠BAD, and CP bisects ∠BCD's outer corner ∠BCE,

∴∠ 1=∠2,∠3=∠4,

∫(≈ 1+∠2)+∠B =( 180-2∠3)+∠D,

∠2+∠P=( 180 -∠3)+∠D,

∴2∠P= 180 +∠D+∠B,

∴∠P=90 + 12(∠B+∠D)。